Name:
Directions: Show all work in a way that would earn you credit on the AP Test! This is always the rule! Some answers are provided at the end in italics and underlined. If you need more space, use binder paper and staple to your worksheet.

For the following three reactions:
a) Write the $\mathrm{K}_{\text {eq }}$ expression in terms of concentration, K_{c}.
b) Given the equilibrium concentrations, state whether each equilibrium is product-favored, reactant-favored, or fairly even ([products] \approx [reactants]).
c) Calculate the value of K_{c}.

1) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{NH}_{3}(\mathrm{~g})$

At equilibrium:
$\left[\mathrm{N}_{2}\right]=1.50 \mathrm{M}$ $\left[\mathrm{H}_{2}\right]=2.00 \mathrm{M}$
$\left[\mathrm{NH}_{3}\right]=0.01 \underline{\mathrm{M}}$
2) $\mathrm{HF}(\mathrm{aq}) \leftrightarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})$

At equilibrium: $\quad[\mathrm{HF}]=0.55 \mathrm{M}$
$\left[\mathrm{H}^{+}\right]=0.001 \overline{\mathrm{M}}$
$[F-]=0.001 \underline{M}$
3) $\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{SCN}^{-}(\mathrm{aq}) \leftrightarrows \mathrm{FeSCN}^{2+}(\mathrm{aq})$

At equilibrium:
$\left[\mathrm{Fe}^{3+}\right]=0.55 \mathrm{M}$
$[\mathrm{SCN}-]=0.001 \underline{M}$
$\left[\mathrm{FeSCN}^{2+}\right]=0.001 \underline{\mathrm{M}}$
4) Knowing that pure water has a density of $1 \mathrm{~g} / 1 \mathrm{~mL}$ calculate the mass of 1.00 Liter of water.

Calculate the number of moles in 1.00 L of $\mathrm{H}_{2} \mathrm{O}$.

What is the concentration (\underline{M}) of water in water?

At this temperature, can you get more moles of water into this Liter of water?

The $\left[\mathrm{H}_{2} \mathrm{O}\right]$ \qquad (is / is not) constant.

Remember!

Since the concentrations of solids and liquids are constant, they are incorporated into the equilibrium constant, Keq. That means, just leave them out of the K_{c} or K_{p} expression. Only include (g) and (aq)!
5) Write equilibrium expressions for each of the rxns:
a) $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
b) $\mathrm{Ni}(\mathrm{s})+4 \mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{Ni}(\mathrm{CO}) 4(\mathrm{~g})$
c) $5 \mathrm{CO}(\mathrm{g})+\mathrm{I}_{2} \mathrm{O}_{5}(\mathrm{~s}) \rightleftharpoons \mathrm{I}_{2}(\mathrm{~g})+5 \mathrm{CO}_{2}(\mathrm{~g})$
d) $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}(\mathrm{aq}) \rightleftharpoons \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$
e) $\mathrm{AgCl}(\mathrm{s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}(\mathrm{aq})$

Dougherty Valley HS Chemistry - AP

Equilibrium - Chemical Equilibrium Problem Set 1

6) Write the equilibrium expression in terms of partial pressures $\left(K_{p}\right)$ for each of the following reactions. Rate the reactions (a, b, c, d) in order of their increasing tendency to proceed toward completion:
More Reactant
More Product
Favored
Favored
a) $4 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$K_{p}=1 \times 10^{228} \mathrm{~atm}$
b) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$
$\mathrm{K}_{\mathrm{p}}=5 \times 10^{-31}$
c) $2 \mathrm{HF}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g})$
$K_{p}=1 \times 10^{-13}$
d) $2 \mathrm{NOCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{p}}=4.7 \times 10^{-4} \mathrm{~atm}$

A Question That You Should Be Able To Answer:
Why don't the K_{p} 's in (b) and (c) have units?
\square
7) (a) Write the K_{c} expression for $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{SO}_{3}(\mathrm{~g})$

Calculate the value of K_{c} :
At equilibrium: $\quad\left[\mathrm{SO}_{2}\right]=1.50 \mathrm{M}$
$\left[\mathrm{O}_{2}\right]=1.25 \mathrm{M}$
$\left[\mathrm{SO}_{3}\right]=3.50 \underline{\mathrm{M}}$
b) If we reverse the equation, it is:
$2 \mathrm{SO}_{3}(\mathrm{~g}) \leftrightarrows 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
Write the K_{c} expression for this equation and calculate the new value of K_{c} :

How does the expression and the value of K_{c} in 7 (b) compare with those in 7(a)?
c) If we now multiply all of the coefficients by $1 / 2$:
$\mathrm{SO}_{3}(\mathrm{~g}) \leftrightarrows \mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$
Write the K_{c} expression for this equation and calculate the new value of K_{c} :

How do they compare with 7(b)?
d) What would happen to the K_{c} expression and its value if we doubled the coefficients?

Summarize:

Equation	\mathbf{K}_{c} in terms of original \mathbf{K}
doubled	
reversed	
halved	

8) Consider an equilibrium that occurs in two steps:

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{~S}(\mathrm{aq}) \leftrightarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HS}^{-}(\mathrm{aq}) \\
& \mathrm{HS}-(\mathrm{aq}) \leftrightarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{S}^{2-}(\mathrm{aq})
\end{aligned}
$$

a) Write the overall reaction.
b) How do the K_{c} 's for the two steps ($\mathrm{K}_{\mathrm{c} 1} \& \mathrm{~K}_{\mathrm{c} 2}$) relate to the K_{c} of the overall reaction $\left(\mathrm{K}_{\mathrm{c}}\right)$?

